THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5540 Advanced Geometry 2016-2017 Suggested Solution to Assignment 3

1. Recall the line separation property with another formulation:

If B is a point and l is a line passing through the point B, then we can define a equivalence relation on the points of $l \setminus \{B\}$ such that $A \sim C$ if and only if the line segment AC does not contain B, i.e. A * B * C is not true.

Furthermore, there are only two equivalence classes, hence we say A and C are said to be on the same side of B if $A \sim C$, otherwise they are said to be on opposite side of B.

- (a) Considering the above equivalence relation with a fixed point B. By the assumption that A * B * C, we know that A ~ C. Furthermore, by axiom B3, B * C * D implies that C * B * D is not true, i.e. C ~ D. Therefore, A ~ D and so A * B * D.
 Note that A * B * C and B * C * D imply D * C * B and C * B * A by axiom B1. By the above argument, we have D * C * A, as well as A * C * D by axiom B1 again.
- (b) Considering the above equivalence relation with a fixed point B. By the assumption that A * B * D, we know that A ≈ D. Furthermore, by axiom B3, B * C * D implies that C * B * D is not true, i.e. C ~ D. Therefore, A ≈ C and so A * B * C.
 Then, by the above and (a), A * B * C and B * C * D implies A * C * D.
- 2. Let l be a line. By axiom **I2**, there exist two distinct points B_1 and B_2 lying on l.

By axiom **B2**, there exists B_3 such that $B_1 * B_2 * B_3$. Repeating this argument, there exists an infinite sequence of points B_n on l such that $B_n * B_{n+1} * B_{n+2}$, for n = 1, 2, 3, ...

Therefore, the line l has infinitely many distinct points.

3. Let A and B be two distinct points.

There exists a point D that does not lying on the line passing through A, B^{\dagger}

By axiom **B2**, there exists C such that A * D * C and there exists F such that C * B * E.

Then consider the line l passing through D and E (axiom I1), firstly $A, B, C \notin l^{\ddagger}$

Also, *l* contains *D* with the property A * D * C, but it does not any point lying between *B* and *C* since C * B * E.

By axiom **B4**, the line *l* must contain a point *X* such that A * X * B.

4. Let A, B and C be three noncollinear points.

By using the result in the previous question, there exist points D, E such that A * D * B and A * E * C.

In $\triangle ABE$, consider the line l_{CD} passing through the point C and D (axiom I1), it contains D with the property A * D * B, but it does not any point lying between A and E since A * E * C.

By axiom **B4**, the line l_{CD} must contain a point X such that B * X * E.

Similarly, in $\triangle ACD$, consider the line l_{BE} passing through the point B and E (axiom I1), it contains E with the property A * E * C, but it does not any point lying between A and D since A * D * B.

By axiom **B4**, the line l_{BE} must contain a point X' such that C * X' * D.

Therefore, X and X' are points that lie on both l_{CD} and l_{BE} which forces that X = X'. Also, we have B * X * E and C * X * D.

By using crossbar theorem, the ray r_{AX} contains a point F such that B * F * C. We claim that A * X * F.

Once again, in $\triangle ABF$, consider the line l_{CD} passing through the point C and D (axiom I1), it contains D with the property A * D * B, but it does not any point lying between B and F since B * F * C.

By axiom **B4**, the line l_{CD} must contain a point X'' such that A * X'' * F.

Therefore, X and X'' are points that lie on both l_{CD} and l_{AF} which forces that X = X''. Also, we have A * X * F.

Note that B and X are on the same side of the line l_{AC} since A * X * E, also C and X are on the same side of the line l_{AB} since C * X * D. Therefore, X is an interior point of $\angle BAC$.

Similarly, we can show that X is an interior point of $\angle ABC$ and $\angle BCA$. As a result, X is an interior point of the triangle ABC.

5. (a) Let Γ be a circle with center O and radius OA.

Let l be any line passing through O. By the line separation property, $l \setminus \{O\}$ can be divided into two nonempty disjoint subsets S_1 and S_2 . Also, $r_1 = S_1 \cup \{O\}$ and $r_2 = S_2 \cup \{O\}$ are two rays with the same vertex O.

By axiom C1, there exists a unique B_i on the ray r_i such that $OA \cong OB_i$, for i = 1, 2.

Therefore, $l \cap \Gamma = (r_1 \cup r_2) \cap = (r_1 \cap \Gamma) \cup (r_2 \cap \Gamma) = \{B_1, B_2\}.$

(b) Let Γ be a circle.

There exists a line l which does not contain O^{\dagger} .

By question 2, l contains an infinite sequence of points B_n .

Then, we have an infinite sequence of lines l_{OB_n} such that they all pass through the point O. Note that if $i \neq j$, $l_{OB_i} \neq l_{OB_j}$ and $l_{OB_i} \cap l_{OB_j} = \{O\}$.[‡] By (a), each line l_{OB_i} contains two points of the circle Γ while these two points must not lie on another line l_{OB_j} for $i \neq j$. Therefore, a circle has infinitely many points.

6. Let A = (0,1) and B = (1,2). Then $d(A,B) = \sqrt{(1-0)^2 + (2-1)^2} = \sqrt{2}$.

Let r be the ray $\{(x,0) : x \in \mathbb{Q} \text{ and } x > 0\}$ which has vertex O. Then, for any point C = (x,0) on the ray r, d(O,C) = x which is rational number and it cannot be $\sqrt{2}$.

Therefore, there exists no C on the ray r such that $AB \cong OC$.

7. (a) Let A and B are distinct points and let L = d(A, B). Since A and B are distinct points, L > 0.

Let $C = (c_1, c_2)$ and r is a ray with vertex C. Consider the quadrilateral with vertices $(c_1 + L, c_2), (c_1, c_2 + L), (c_1 - L, c_2)$ and $(c_1, c_2 - L)$. We can see that the distance between

any point on that quadrilateral and C is L and the ray r must intersect that quadrilateral exactly at one point D. Therefore, D is the unique point on r such that $AB \cong CD$.

(Remark: The quadrilateral constructed is in fact the circle centered at C with radius L.)

- (b) Biscally, we have to show \cong is an equivalance relation, but it simply follows from the fact that equality of real number is an equivalence relation.
- (c) Let $A = (a_1, a_2)$, $B = (b_1, b_2)$, $C = (c_1, c_2)$ be three points such that A * B * C. We claim that

$$d(A,C) = |a_1 - c_1| = |a_1 - b_1| + |b_1 - c_1| = d(A,B) + d(B,C).$$

By the definition of A * B * C, it means that we have either $a_1 * b_1 * c_1$ or $a_2 * b_2 * c_2$ or both, where $a_1 * b_1 * c_1$ means $a_1 < b_1 < c_1$ or $a_1 > b_1 > c_1$ and so on. Note that if $a_1 * b_1 * c_1$, for both cases, we must have $|a_1 - c_1| = |a_1 - b_1| + |b_1 - c_1|$ Therefore, if we have both $a_1 * b_1 * c_1$ and $a_2 * b_2 * c_2$, then we have

$$d(A,C) = |a_1 - c_1| + |a_2 - c_2|$$

= $(|a_1 - b_1| + |b_1 - c_1|) + (|a_2 - b_2| + |b_2 - c_2|)$
= $(|a_1 - b_1| + |a_2 - b_2|) + (|b_1 - c_1| + |b_2 - c_2|)$
= $d(A, B) + d(B, C).$

If we have $a_1 * b_1 * c_1$ only, since A * B * C, we must have $a_2 = b_2 = c_2$ (A, B and C lie on a vertical line). Then we have

$$d(A,C) = |a_1 - c_1| = |a_1 - b_1| + |b_1 - c_1| = d(A,B) + d(B,C)$$

and the above equation holds for the case that $a_2 * b_2 * c_2$ only.

Therefore, if C, D and E are three points such that D * E * F and $AB \cong DE$, $BC \cong EF$. Then

$$d(A, C) = d(A, B) + d(B, C) = d(D, E) + d(E, F) = d(D, F)$$

which shows that $AC \cong DE$.

Therefore, axioms C1, C2 and C3 hold.

[†] We have proved this result before.

[‡] Need one line argument.