THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5540 Advanced Geometry 2016-2017
Suggested Solution to Assignment 3

1. Recall the line separation property with another formulation:

If B is a point and l is a line passing through the point B, then we can define a equivalence relation on the points of $l \backslash\{B\}$ such that $A \sim C$ if and only if the line segment $A C$ does not contain B, i.e. $A * B * C$ is not true.

Furthermore, there are only two equivalence classes, hence we say A and C are said to be on the same side of B if $A \sim C$, otherwise they are said to be on opposite side of B.
(a) Considering the above equivalence relation with a fixed point B. By the assumption that $A * B * C$, we know that $A \nsim C$. Furthermore, by axiom B3, $B * C * D$ implies that $C * B * D$ is not true, i.e. $C \sim D$. Therefore, $A \nsim D$ and so $A * B * D$.
Note that $A * B * C$ and $B * C * D$ imply $D * C * B$ and $C * B * A$ by axiom B1. By the above argument, we have $D * C * A$, as well as $A * C * D$ by axiom $\mathbf{B 1}$ again.
(b) Considering the above equivalence relation with a fixed point B. By the assumption that $A * B * D$, we know that $A \nsim D$. Furthermore, by axiom B3, $B * C * D$ implies that $C * B * D$ is not true, i.e. $C \sim D$. Therefore, $A \nsim C$ and so $A * B * C$.

Then, by the above and (a), $A * B * C$ and $B * C * D$ implies $A * C * D$.
2. Let l be a line. By axiom I2, there exist two distinct points B_{1} and B_{2} lying on l.

By axiom B2, there exists B_{3} such that $B_{1} * B_{2} * B_{3}$. Repeating this argument, there exists an infinite sequence of points B_{n} on l such that $B_{n} * B_{n+1} * B_{n+2}$, for $n=1,2,3, \ldots$.

Therefore, the line l has infintely many distinct points.
3. Let A and B be two distinct points.

There exists a point D that does not lying on the line passing through $A, B .^{\dagger}$
By axiom B2, there exists C such that $A * D * C$ and there exists F such that $C * B * E$.
Then consider the line l passing through D and E (axiom I1), firstly $A, B, C \notin l . \ddagger$
Also, l contains D with the property $A * D * C$, but it does not any point lying between B and C since $C * B * E$.

By axiom B4, the line l must contain a point X such that $A * X * B$.

4. Let A, B and C be three noncollinear points.

By using the result in the previous question, there exist points D, E such that $A * D * B$ and $A * E * C$.

In $\triangle A B E$, consider the line $l_{C D}$ passing through the point C and D (axiom I1), it contains D with the property $A * D * B$, but it does not any point lying between A and E since $A * E * C$.

By axiom B4, the line $l_{C D}$ must contain a point X such that $B * X * E$.
Similarly, in $\triangle A C D$, consider the line $l_{B E}$ passing through the point B and E (axiom I1), it contains E with the property $A * E * C$, but it does not any point lying between A and D since $A * D * B$.

By axiom B4, the line $l_{B E}$ must contain a point X^{\prime} such that $C * X^{\prime} * D$.
Therefore, X and X^{\prime} are points that lie on both $l_{C D}$ and $l_{B E}$ which forces that $X=X^{\prime}$. Also, we have $B * X * E$ and $C * X * D$.

By using crossbar theorem, the ray $r_{A X}$ contains a point F such that $B * F * C$. We claim that $A * X * F$.

Once again, in $\triangle A B F$, consider the line $l_{C D}$ passing through the point C and D (axiom I1), it contains D with the property $A * D * B$, but it does not any point lying between B and F since $B * F * C$.

By axiom B4, the line $l_{C D}$ must contain a point $X^{\prime \prime}$ such that $A * X^{\prime \prime} * F$.

Therefore, X and $X^{\prime \prime}$ are points that lie on both $l_{C D}$ and $l_{A F}$ which forces that $X=X^{\prime \prime}$. Also, we have $A * X * F$.

Note that B and X are on the same side of the line $l_{A C}$ since $A * X * E$, also C and X are on the same side of the line $l_{A B}$ since $C * X * D$. Therefore, X is an interior point of $\angle B A C$.

Similarly, we can show that X is an interior point of $\angle A B C$ and $\angle B C A$. As a result, X is an interior point of the triangle $A B C$.

5. (a) Let Γ be a circle with center O and radius $O A$.

Let l be any line passing through O. By the line separation property, $l \backslash\{O\}$ can be divided into two nonempty disjoint subsets S_{1} and S_{2}. Also, $r_{1}=S_{1} \cup\{O\}$ and $r_{2}=S_{2} \cup\{O\}$ are two rays with the same vertex O.
By axiom C1, there exists a unique B_{i} on the ray r_{i} such that $O A \cong O B_{i}$, for $i=1,2$.
Therefore, $l \cap \Gamma=\left(r_{1} \cup r_{2}\right) \cap=\left(r_{1} \cap \Gamma\right) \cup\left(r_{2} \cap \Gamma\right)=\left\{B_{1}, B_{2}\right\}$.
(b) Let Γ be a circle.

There exists a line l which does not contain $O .^{\dagger}$
By question 2, l contains an infinite sequence of points B_{n}.
Then, we have an infinite sequence of lines $l_{O B_{n}}$ such that they all pass through the point O. Note that if $i \neq j, l_{O B_{i}} \neq l_{O B_{j}}$ and $l_{O B_{i}} \cap l_{O B_{j}}=\{O\} .^{\ddagger} \mathrm{By}(\mathrm{a})$, each line $l_{O B_{i}}$ contains two points of the circle Γ while these two points must not lie on another line $l_{O B_{j}}$ for $i \neq j$.
Therefore, a circle has infinitely many points.
6. Let $A=(0,1)$ and $B=(1,2)$. Then $d(A, B)=\sqrt{(1-0)^{2}+(2-1)^{2}}=\sqrt{2}$.

Let r be the ray $\{(x, 0): x \in \mathbb{Q}$ and $x>0\}$ which has vertex O. Then, for any point $C=(x, 0)$ on the ray $r, d(O, C)=x$ which is rational number and it cannot be $\sqrt{2}$.

Therefore, there exists no C on the ray r such that $A B \cong O C$.
7. (a) Let A and B are distinct points and let $L=d(A, B)$. Since A and B are distinct points, $L>0$.

Let $C=\left(c_{1}, c_{2}\right)$ and r is a ray with vertex C. Consider the quadrilateral with vertices $\left(c_{1}+L, c_{2}\right),\left(c_{1}, c_{2}+L\right),\left(c_{1}-L, c_{2}\right)$ and $\left(c_{1}, c_{2}-L\right)$. We can see that the distance between
any point on that quadrilateral and C is L and the ray r must intersect that quadrilateral exactly at one point D. Therefore, D is the unique point on r such that $A B \cong C D$.
(Remark: The quadrilateral constructed is in fact the circle centered at C with radius L.)
(b) Biscally, we have to show \cong is an equivalance relation, but it simply follows from the fact that equality of real number is an equivalence relation.
(c) Let $A=\left(a_{1}, a_{2}\right), B=\left(b_{1}, b_{2}\right), C=\left(c_{1}, c_{2}\right)$ be three points such that $A * B * C$. We claim that

$$
d(A, C)=\left|a_{1}-c_{1}\right|=\left|a_{1}-b_{1}\right|+\left|b_{1}-c_{1}\right|=d(A, B)+d(B, C)
$$

By the definition of $A * B * C$, it means that we have either $a_{1} * b_{1} * c_{1}$ or $a_{2} * b_{2} * c_{2}$ or both, where $a_{1} * b_{1} * c_{1}$ means $a_{1}<b_{1}<c_{1}$ or $a_{1}>b_{1}>c_{1}$ and so on. Note that if $a_{1} * b_{1} * c_{1}$, for both cases, we must have $\left|a_{1}-c_{1}\right|=\left|a_{1}-b_{1}\right|+\left|b_{1}-c_{1}\right|$ Therefore, if we have both $a_{1} * b_{1} * c_{1}$ and $a_{2} * b_{2} * c_{2}$, then we have

$$
\begin{aligned}
d(A, C) & =\left|a_{1}-c_{1}\right|+\left|a_{2}-c_{2}\right| \\
& =\left(\left|a_{1}-b_{1}\right|+\left|b_{1}-c_{1}\right|\right)+\left(\left|a_{2}-b_{2}\right|+\left|b_{2}-c_{2}\right|\right) \\
& =\left(\left|a_{1}-b_{1}\right|+\left|a_{2}-b_{2}\right|\right)+\left(\left|b_{1}-c_{1}\right|+\left|b_{2}-c_{2}\right|\right) \\
& =d(A, B)+d(B, C) .
\end{aligned}
$$

If we have $a_{1} * b_{1} * c_{1}$ only, since $A * B * C$, we must have $a_{2}=b_{2}=c_{2}(A, B$ and C lie on a vertical line). Then we have

$$
d(A, C)=\left|a_{1}-c_{1}\right|=\left|a_{1}-b_{1}\right|+\left|b_{1}-c_{1}\right|=d(A, B)+d(B, C)
$$

and the above equation holds for the case that $a_{2} * b_{2} * c_{2}$ only.

Therefore, if C, D and E are three points such that $D * E * F$ and $A B \cong D E, B C \cong E F$. Then

$$
d(A, C)=d(A, B)+d(B, C)=d(D, E)+d(E, F)=d(D, F)
$$

which shows that $A C \cong D E$.
Therefore, axioms C1, C2 and C3 hold.
${ }^{\dagger}$ We have proved this result before.
\ddagger Need one line argument.

